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Environmental influence on intramolecular electron-vibration 
transitions 

N F Perelman, I Sh Averbukh, V A Kovarsky and A A Mosyak 
Applied Physics Institute, MoSSR Academy of Sciences, Kishinev-28, 277028, USSR 

Received 28 June 1988 

Abstract. A path integral method is used to calculate the rate of intramolecular electron- 
vibration transitions taking into account the influence of the environment as the source of 
random Gaussian forces for vibrational degrees of freedom. The evaluation of the generat- 
ing function for the rates of multiquantum transitions is reduced to the solution of some 
integral equations with the kernels dependent on the random force correlation function. 
For the Markovian Gaussian random process the exact expression for the generating 
function is obtained. The manifestation of the dynamical modulation effects of the sur- 
roundings fluctuations on tunnel and thermostimulated transitions is investigated. 

Radiationless charge transfer transitions in molecular systems interacting with the 
environment (polar solvent, etc) are of great importance for a wide class of chemical 
and  biochemical processes. Therefore the problem is treated intensively with unremit- 
ting interest [ 1-71. The environment essentially influences the character of 
intramolecular electron transitions, their rates, temperature dependence, etc. The best 
studied model of electron transfer takes account of the interaction of the electron with 
the dipolar molecules of the polar solvent only. In  this model the role of the environment 
reveals a temporal modulation of electron transition frequencies by Gaussian random 
processes. If the solvent is described by the Debye-type spectrum of dielectric losses, 
the above-mentioned Gaussian random process is also the Markovian one. Its correla- 
tion function behaves as exp(-ltl/T,) where 7, is the correlation time of random forces 
by which the environment affects the electron. For a sufficiently small perturbation 
value causing the quantum transition its rate may be obtained by the golden rule and  
averaging over all possible realisations of random forces. The latter procedure is 
reduced to averaging some linear-exponentional functional and can be easily performed 
for a Gaussian process. As far as the intramolecular transitions in the presence of a 
solvent are concerned, the strong interaction between an  electron and molecular 
vibrations is of great importance. Here one of the main channels of the solvent influence 
on the electron transfer is the indirect electron-solvent coupling through the solvent 
modification of intramolecular vibration dynamics [&lo]. 

An important aspect of this modification was considered in [8] by treating the 
environment as a source of the friction forces for quantum molecular vibrations. In 
this context the problem of intramolecular transition is similar to the problem of a 
quantum particle tunnelling in the presence of dissipation. The latter has been actively 
investigated recently in connection with the study of tunnelling in the Josephson 
junction [ 111. 

The aim of the present paper is to consider another aspect of the problem. The 
intramolecular electron-vibration radiationless transitions may be interpreted as a n  
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activation going over (high-temperature regime) or tunnelling through (low- 
temperature regime) the potential barriers by molecule nuclei. We shall investigate 
the role of environment as a stochastic modulator of the potential barrier's heights 
and widths by means of variation of equilibrium nuclei positions in different electronic 
states and  energy gaps between the adiabatic energy surfaces. 

The principles of quantum tunnelling in the presence of external time-dependent 
fields are well elaborated (see [12-151). The main features of this process reveal 
themselves also in intramolecular nuclear tunnelling considered here. 

In the simplest model used below for describing the solvent dynamic modulation 
effects on the electron-vibration transition, the generating function for the transition 
probability will be presented by averaging some exponentional-quadratic-type func- 
tional of random forces with a symmetric time-translation-invariant kernel. For the 
Gaussian-Markovian type of random process representing the influence of the environ- 
ment, the averaging will be executed exactly by direct evaluation of the path integral 
over all realisations of random forces. 

Let us model the energy spectrum of the molecular electron-vibration system in 
the absence of solvent by two parabolic adiabatic terms U,,,(q) with the same curvature 
but shifted equilibrium positions ( q  is the vibration coordinate). The polar solvent 
action is modelled by the existence of some classical random force affecting the nuclei. 
For quantum transitions accompanied by charge transfer, the force is, generally 
speaking, dependent on the electronic state. For the sake of simplicity we shall take 
this into account in the final state 2 only. The model Hamiltonian for this two-channel 
electron-vibration system may be presented in a matrix form: 

H = Hd+ Hnd 

O M  
0 H2 H n d =  [ M 0 1  

mwLqL 
2 u2(4) = fw+-----[mo*q,+f( t ) lq .  

Here m and w are the reduced mass and the frequency of nuclei vibration, hw, = U2(0)  
and qs is the distance between the Ul,2(q) minima in the absence of solvent. The force 
f( t )  is the Gaussian-Markovian random process with the correlation function 

N t , ,  t 2 )  = ~ o e x p [ - y / ~ l - t z / l  y =  l / T c .  (1) 

The matrix element M of the non-diagonal perturbation producing 1 2 transition is 
assumed to be constant. With the use of the interaction representation the system 
density matrix p  ̂ obeys 

dS d = s-'$ i h - = H  S 
d t  
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The equation for the non-diagonal matrix element u21 which determines the rate of 
quantum transition is given by 

As is easily shown 

Sz2( t ,  t ' )=Sl l ( t ,  t ' )  exp[-iwo(t-f ')]Texp -- V(t")d t"  ( A I,: 

q ( t = ex p( - i HI t ) q ex p( i H, t ) 
where the f operator provides chronological ordering. 

Let us assume here that the perturbation causing the transition is weak enough so 
that the populations of the 1 , 2  states are not greatly deviated from their equilibrium 
values: 

where T is the temperature. 
The rate of the 1 + 2 transition is given by 

where the inner brackets denote the quantum statistical average (trace over vibration 
quantum states in term 1 (. . .) = Sp{. . . p : , } ) .  The outer brackets mean the average 
over all realisations of the random processf( t ) .  With the use of ( 2 ) ,  ( 3 )  and (4) we obtain 

where to is the moment of perturbation 'switch on', t - to+ CO. The stationarity of the 
f( t )  process provides the integrand dependence in (5) on t - t' only. Using the t - to+ CO 

limit one can obtain 

r r W I 2 = 7  2 M 2  Re J ( t )  d i  
h 

b ( t ) = ( ( f e x p ( - f j d  V(t ' )  df')). (7)  
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The quantum-statistical average in (7) is evaluated exactly by means of standard 
methods of multiquantum electron-vibration transition theory (see [ 161) 

T(t) = ( 4 ( [ f ( t ) l ) )  
I 

4 [ f ( r ) l =  exp( -; / J  [ I +  V( f l ) lG( t l ?  + 7?(f2)1 d t ,  dt2) 
0 

(8) 
G ( r , ,  t2 )=faw2[( i i+1)  exp(- iwl t , - t2~)+i i  exp( iw~t , - tz l ) ]  

It is convenient to average the exponential-quadratic functional 4([f(r)])  in (8) by 
presenting s(t) in the form of a path integral: 

1 

cp ( t )  = - { G( t ,  , t 2 )  dt ,  dt, = iwt + ( f i  + 1) e-’”‘ + ii e’“ - ( 2 i i  + 1). 
a 

0 

Here B-’( t ,  , t21t) is the kernel of the integral operator inverse to B( t ,  , t r )  on the finite 
interval (0, t )  (symbol r separated by a vertical line represents the parametric depend- 
ence of the kernel on t ) .  The products of functions (cup), operators ( A B ) ,  functions 
and operators (cuA, Acu) present in (9) mean the following: 

cup = lo‘ a( r ’ )p ( r ’ )  d t ’  

AB = Io‘ A( t , ,  t ’ ) B (  t ’ ,  t Z )  dr’ 

cuA = lo‘ a (  r’)A( t’, t 2 )  dr‘ 

~ c u  = J o f  ~ ( t , ,  t ’ )a( t ’ )  dr‘. 

Let us now carry out the procedure of functional shift q = R + fj for the path integral 
in the numerator of (9) in order to eliminate the terms linear in f from the exponent. 
The corresponding function R has to satisfy 

R = - L (  ~ = ( i +  FG)-’F 
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The quantity L( t ,  , f z i f )  obeys the equation 

L ( f 1 ,  t ? l t )=F( f1 ,  t * / t ) -  F ( t , ,  t‘lt)G(t’, t”)L( t” ,  t1lt)dt’dt”.  11 
After performing the shift operation the remaining integration over 77 is straightforward 
due  to the Gaussian character of the integral: 

3-( t )  = 1 exp( + 4 t L t ) .  
J d e t  11 + FGI 

It is easily seen that 

r r  

0 

where the quantity Q = GLG satisfies the following integral equation (in symbolic 
notation): 

Q = G F G  - GFQ. (13) 

The value of det / I  + FG/ may be calculated using the well known formula 

detll + FGI = exp{Sp In( 1 + FG)} 

resulting in 

d d 
- In det/ 1 + FG/ = - Sp{ FG - F G F G  + f FGFGFG - . . .}. (14) d t  d t  

By straightforward differentiation of the sum in (14) one arrives at the expression 

d 
d t  
- In det I 1 + FG/ = 2 R ( t, t I t ) (15) 

where the quantity R = (1 + FG)-l  F G  obeys the following integral equation: 

R = FG - FGR. (16) 
Since detil + FG/ = 1 at t = 0 equation (15) leads to 

d e t l l + F G l = e x p ( 2 l ( :  R(t ’ ,  t‘ / t’)dt‘) .  (17)  

The expressions (1 l) ,  (12) and (17) provide the general solution for the generating 
function Y(r) through the solutions of integral equations (13) and (16). For the 
correlation function B (  tl , f 2 )  determined by (1) the latter solutions may be obtained 
in an  explicit form by reducing the integral equations (13) and (16) to differential ones 
( x  = ut,, y = ut2): 

d4 R d 2  R -+ (1 - x’) T+ x( 2ib - x )  R = 2ibxw6(x - y )  
dx4  d x  

d?Q+( l -x2 ) -+x(2 ib -x )Q=2ibxG(x ,y )  d’Q 
dx4  dx’ 

x = y / w  b = B,/mhw3. 
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The partial solutions of these inhomogeneous differential equations may be chosen in 
the form 

SI.> = { f [ ( x ' -  1) 'F ((xz+ 1)2 -8ibx)"']}''*. (21) 

The solutions of (13) and (16) can be found as a sum of partial solutions (20) and 
(21) and the linear combinations of the solutions of homogeneous equations corre- 
sponding to (18) and  (19): 

R(x ,y l t )=R, (x ,y l t )+k ,  eslx+k; e-SI"+k,es~X+k;e-S2x (22) 
S,(Y+,.) + A,  e - s I i Y + c ? "  + A 2  esz(.Y+l')+A e-S2(x+?) Q(x,Ylr)=Q,(x,Ylt)+Al e 2 

s I ( . Y - l ' )  + e - s l l ' . Y - ? ) ]  + BZ[eS2i.Y->') + e-Sz'x-.v'] 

1 
Y-sl?l. 

+&[e  
+ C [ ~ S ~ . X ~ S ~ ?  + e S z . ~ + S l ~ , ~  + c[e-S,.~-S2?' + e-S2.~-S,.v 

(23) + E [ ~ S , . X - S , Y  + e - s 2 . X + s l ? . ]  + E [ e - S I . Y + s 2 J ' + e  2 -  

The substitution of (22) and (23) in (13), (16) yields the system of linear algebraic 
equations for k l , 2 ,  B1,,,C, c, E, E. 

The system has been solved in a conventional way but the obtained expressions 
are not presented here because of their lengthy form.. The system determinant 
is given by 

S2+i S ,+ i  

8f i (  fi + 1 )(  S: - Si) - 

- S , ( S ~ + X ) '  + s , ( s ~ - x ) '  e-S2wf]. 

[s,(s, + x)* eSlwr - s,(s, - x)' e-Slwr 
( s :+ l ) (S :+l )  

Using (22) and (24) one can verify that 

Thus, in accordance with (17) the explicit form for de t i l+  FGI is 

9 ( t )  e-yl de t / l  + FGI = - 
63 ( 0 )  
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The above consideration completely resolves the problem of evaluating the generating 
function F(r) in terms of elementary functions. The further calculations of the 
transition rates for various relations among the dimensionless parameters a, b, x can 
be easily performed by the computer-generated Fourier transformation ( 6 ) .  

For illustration of the qualitative features of W,* dependence on parameters a, b, 
and  x let us present some asymptotic estimates. 

In the limit of extremely lowf( t )  fluctuations (quasistatic limit, b /x  >> 1) the general 
expression for 3 ( t )  is reduced to 

After substituting (26 )  into ( 6 )  the W,, estimate can be done by the saddle-point 
method. For high enough values of temperature and of heat release constant 

li >> 1 a 3 1  

and for the b magnitude satisfying 

a’li 
b << 7 P o  b = m a x  - - ( 6;p0’ l i l i)  

we get the following estimate: 

Here A is the activation energy for the 1 + 2  transition, oO<O (i.e. the process of 
radiationless de-excitation is considered). While deriving (28 )  we took into account 
that the intensity of chaotic force is proportional to the temperature: b = CUT. Thus the 
interaction of the molecule with the surroundings leads to an  activation energy decrease 
providing the exponential growth of transition rate. Figure 1 shows the activation 
energy ( A * )  dependence on the intensity of fluctuations (b) ,  numerically obtained by 
the use of ( 6 )  and ( 2 6 ) .  This numerical result confirms the above-mentioned tendency 
of A* to decrease. 

For the case of low temperature ( i i  << 1) and  small b values one can get the following 
asymptotic expression: 

where Wy2 is the temperature-independent rate of tunnel transition in the absence of 
external fields. Thus, the interaction with the surroundings leads to an  exponential 
increase in the tunnelling probability and causes strong temperature dependence of 
the transition rate (b  - T ) .  It is worth mentioning that the enhancement of transition 
probability is due  to random force fluctuations optimal for tunnelling by providing 
the decrease in barrier widths and  heights. The statistical weight of optimal fluctuations 
rises with temperature and  causes the enhancement of transition probability. In figure 
2 ( a )  numerical results are plotted for the rate of tunnel radiationless transition against 
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I 
0.4 0.8 

b 

Figure 1.  The activation energy A* of thermostimulated radiationless transition as  a function 
of the intensity of the random force (parameter b )  in the quasistatic limit; ( y / w  = 0), 
p ( ,  = 50, a = 10, FI = 30. 

the intensity of random forces for a wide range of variations of the parameter b. The 
sharp enhancement of the rate value against the b is clearly seen. 

The expression (26) may be presented in the form 

The value Fo[a(f), t ]  represents the well known generating function for multiquantum 
radiationless transitions [ 161 corresponding to a fixed value of the heat release constant 
a(f) = m w q : ( f ) / h .  Here q ? ( f )  = q s + f / m w 2  is the relative displacement of adiabatic 
potential minima along the q coordinate in the presence of a constant force f: Hence 

1 
W -- exp( -”) WY2( f )  df: ‘=-4-a() -w 2 Bo 

Thus the W,, value is presented as an average of the well known expression Wy,(f )  
for transition probability in the displaced parabola model (see e.g. [16]). The averaging 
is performed by means of the Gaussian distribution for all possible realisations of 
random force value. This interpretation is, of course, the direct consequence of the 
quasistatic limit (x + 0) used in (26). 
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Figure 2. The probability of tunnel radiationless transition as  a function of ( a )  parameter 
b, ( x  = 0), ( b )  spectral width x ,  ( b  = 0.02); W‘:? = W , ?  ( b  = O ) ,  p o  = 8, a = 2. 

Let us now consider the opposite limit b /x  << 1, x >> 1, corresponding to very fast 
environment fluctuations. Using (12), (25) and retaining only the leading terms in b / x  
we obtain 

( d e t ~ l + F G ~ ) - ” ’ = e x p (  -- b (2A+ 1)wt  

2% 

s , ( t ) = 2 + e i u r [ i i - ( f i + l )  e-iwr]2 

s,(t) = [ (z+  1) e - iw‘-  fi]{4(eiu‘- 1) - f [ ( f i +  1) e-’”‘- f i ~ ( e ” ~ ‘ -  1)). 
In accordance with (30) when max(ab/x,  b /x)<< 1 the environment slightly affects the 
molecule quantum transitions. Let us consider the intermediate situation, when b / x  << 
1, but a >> 1 so that a b / %  5 1. Using the Fourier transform of exp[(a/2)cp(t)] we find 



3908 N F Perelman et a1 

from (6), (11) and (30) that 

exp[ix.i-rT+ $(T)] d.i 7- = wt. 

Here I,l(x) is the modified Bessel function, no = [po+ ( a /2 ) ]  is the integer part of 
po+ (a /2)  and  is the phenomenologically introduced phase relaxation width of the 
electron transition, expressed in w units. This relaxation provides the convergence of 
the integral in (32) when b /x  = O .  Using the integration by parts in (32) it is easy to 
obtain the following asymptotic estimate for x >> 1: 

3 ( 2 A  + 1)2ab 3(2A+ 1)ab 
>> r. 

2xx2 g(”) -- 2xx4 

In the absence of the molecule vibration interaction with the surroundings, and for 
r<< 1, the leading contribution in (31) is given by the n = 0 term 

If, however, the value of ab /% is not too small the terms corresponding to n = 1 ,2 , .  . . 
turns out to be significant. This is due to the fact that in spite of the slight power-type 
g ( p o +  ( a /2 )  - no+ n )  decrease with n the value of Zn,,-, increases exponentially both 
for high temperature ( A  >> l ) ,  when 

and for low temperature (A<< l ) ,  when 

Z n , - n  - exp(n,-n-&a) no- n >> 1. 
J 

The simple estimate for W , 2  can be obtained by retaining in (30) only the term with 
n = p o ,  which does not contain any exponential smallness ( W,? >> Wy2):  

Thus the action of quickly fluctuating surroundings on the molecule vibrational degree 
of freedom causes again, as in the quasistatic limit, the exponential enhancement of 
the electron-vibration transition probability and leads to the barrierless character of 
the transition process. We notice that the rate enlargement with the fluctuation spectrum 
broadening is provided by non-isoenergetic transitions between the vibration levels of 
adiabatic terms 1 and  2 induced by far-Fourier components of random forces. However, 
the molecular nuclei cannot follow the very fast fluctuations, so the environmental 
influence decreases for b / x  + 0. Thus the WIZ dependence on x is a non-monotonous 
one. 
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Figure 2 ( h )  presents the numerically obtained W,? dependence against y for a 
wide range of y, which confirms the above-mentioned qualitative features. 
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